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ABSTRACT 

. 

The caqe of a spinning symmetric body flying at a constant 

speed where the aerodynamic restoring moment is an arbitrary 

function of the angle of attack is examined. 

fold: first, the general problem is discussed, in suitable non- 

dimensional form, to establish the generalized stability boundaries 

and, second, the attention is directed to the inverse problem where- 

by the pertinent aerodynamic parameters are extracted from a given 

bounded solution, suitable for use in data reduction. The general 

case of non-planar motion is examined and shown to be analogous 

to the classical orbital problems, differing only in the form of the 

governing potential function. 

integral form and the special cases of linear aerodynamics and cubic 

The analysis is two- 

The general solution is obtained in 

restoring moments have been integrated and studied to reveal all the 

pertinent characteristics. The various combinations of potential, 

initial conditions and angular momentum (including that due to the 

impressed spin rate) a re  shown to determine whether or not the 

motion is planar, circular, elliptic or non-conic, stable or  unstable 

and the various cases are  categorized to aid in the predictim‘ of the 

motion of spinning symmetrical bodies acting under non-linear 
I 

aerodynamic restoring moments. 
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I. INTRODUCTION 

U p  to fairly recent years the underlying design criteria for the 

dynamic free-flight motion of ballistic missiles and rockets, both 

guided and unguided,have had astheir b;isia,& linear theory. 

theory restricts all forces and moments acting on the aerodynamic 

Such a 

body to be proportional to the deviations from the flight path. 

cases, the linear theory may be applied with impunity and the sub- 

In many . 

sequent rocket flight is a success. However, embarrassing failures 

on some flights prompted a deeper analysis  of the spinning aero- 

dynamic body problem (Refs. (1) - ( 5 ) )  in an attempt to isolate the 

destabilizing influences and to-enable the designs to circumvent such 

failures. 

Tk;z ------+ p 2 e ~  a t t a c h  the general problem of the spinning r- ------ - 
bodies in a non-linear aerodynamic field and by suitable transforma- 

tion techniques shows that it is related to the classical problems in 

orbital mechanics. Such an analogy allows for a generalized treatment 

which allows for the gdverning paranieters to be revealed succinctly. 

The problem is considered first from a topological concept to estab- 

lish the stability boundaries and secondly the analysis has been 

quantized so as to provide the data analyst means by which a given 

bounded solution, or  trajectory, may be analyzed to extract the 

pertinent aerodynamic parameter s, both linear and non-linear. 

Certain restrictions have been placed upon the analysis to 

allow for tractable eolutioas: %he motion ie assumed to be conservative 
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rad the ma-tinerr re8toring momant i8, for tho most prrt, 

assumed to be a two-term polynomial in which the povlrer and magnid 

tude of the noa-linear term is left arbitrary. 

that in the body of the report certain real phenomena are ignored and 

prudence must be exercised in the application of the analysis in any 

particular case. 

(constant) spinning m issile t h e velocity remains constant together 

with the density of the air and further that the oncoming stream is 

uniform with no gusts causing random disturbances to be applied to 

the body. 

otherwi so periodic motion. 

It must be further noted 

It is assumed that throughout the flight of the 

Such disturbances could destroy any phase coherency of an 

. b  
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IX. THE GENE- PROBLEM 

The free-flight motion of a spinning aerodynamic symmetric 

body is but a special case of the classical rigid body vibration problem 

frequently encountered in physics. The idiosyncracy of the aerodyn- 

amic problem lies in the form of the potential f ram which the inherent 

forces are derived. In this Section will be given the basic assumptions 

and analysis leading to the generalized and normalized equations of 

motion and their integral solutions from which the succeeding Sections 

may extract the pertinent results for further analysis. 

k Basic Eauations of Motion 

For the purposes of continuity and reference, the equations of 

motion will &e derived from Newton's Laws. 

the body has six degree8 of freedom defined vectorially as, 

It will be assumed that 

The vectors x(t ) ,  

serves to describe the system and symbols used in the text. The 

angular momentum L = .40' where, by virtue of the choice of a 

principal body-axis system, the inertia tensor 0 i e  diagonal and 

given by, 

o'(t) pertain to a body-fixed axis system. Fig. 1 

-D 

0 0 4; ; p> 
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The aerodynamic force. and momentm are, 

For this study it will be assumed that the aerodynamic forces a re  

linear functions of the perturbations. The aerodynamic moments 

will be assumed expressible in  uncoupled static and dynamic components 

of which only the static restoring moments will be assumed to be non- 

linear functions of the perturbations. 

tional relationships is to be given. 

The exact form of these func- 

Newton's equations, expressed in the body-fixed system are, 

(2.4)* 

(2.5) 

where in  the operator on the left hand side of the equations the time 

derivative is with respect to the body-fixed system. 

equations then assume the form 

, 

The basic 

* 
where 3 represents the gravity vector. 
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and 

where p = 2 , the slenderness parameter and a = tan”(w/U) and 
I 

p =  tan-l(v/U). - 

Before equations (2.6) and ( 2 . 7 )  can be simplified further the 

specific nature of F(t) and N(t) must be given. From the assump- 
3 3 

tion of symmetry and linearify the forces are expressed as, 

It will be further assumed that the forward Pe d remains c nstant 

tnrougnour that porzion oi fiighc under consiciercriivn i’u’ - ~ e u w i i i & ;  

which eliminates the need for the X(a, P, . ) equation and reduces 

the problem to one in five degrees of freedom. This does not preclude i 

a discussion of the dissipative problem but does imply that the 

analysis will apply most directly to slender bodies of low resistance. 

For the main part of the study the roll rate will be assumed constant 

at some specified rate (p  = constant), or, at best, as a slowly varying 

function in time; in which case the need to specify the L( CL,~, .  . . ) 
equation is also avoided. This reduces the problem, not too restrict- 

ively, to one of four degree6 of freedom (a8 8, q, r). 
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The main objective i n  to ntudy the effect8 of a non-linear 

static restoring moment on the system in regard to both stability 

boundaries and the nature of the solutions. A further objective is to 

enable the pertinent parameters of the system to be revealed given 

the physical bounded solution. 

The static moment will be separated from the dynamic moment 

in the form, 

where the dynamic moment ie assumed to be linear in the velocity 

perturbations: 

-+ 
N& 8, . . .) = 

LD 
M q + M h a +  ... 
M r + ~ ~ b +  ... 9 

9 

( 2 a 1 1 )  

, 
If it is further assumed that the airflow over the body is symmetric 

such that the non-linearity in the static restoring moment may be 

expressed in terms of the resultant angle of attack (a i @ ) a  

a polynomial representation for NS(a, p, . . ) is given by, 

2 2 L *  , then 
-+ 

n+m N 

where ?, 3 are  unit vectors along the perturbation a, j3 axes 

respectively. The potential from which the restoring moment may be 

* 
which implies small angles. 
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derived must satisfy, 

(2.13) 

It can be shown that such a potential exists and is found to be, 

The quantity m ( = 1, 2, . . . ) is an arbitrary integer. From physical 

considerations it is seen that a characteristic of the static restoring 

moment representation is that it is anti-symmetric with respect to 

the origin (or trim condition). This property implies that NS(a, 8) 

as given by (2.12) would necessarily consist of a power series in odd 

powers of the resultant angle of attack. Graphically, the restoring 

moments under consideration may be presented as shown in Fig. 2. 

-+ 

Note: (01)~ I Mol is the familiar linear static stability 

parameter where, 

j = 0 corresponds to initial static instability 

j = 1 corresponds to initial static stability 

For  this paper, only the first term in the polynomial representation 

will be retained (i. e., r E 1) but m will remain arbitrary. The 

special case m = 1 the cubic (plus linear) restoring moment will 

receive particular attention. With these assumptions, the equations 

(2.15) 
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These two second-order ordinary differential equations will describe 

the motion of the spinning body in the a, B (cross-flow) plane. 

plane the motion will resemble that shown in Fig. 3. 

one of four degrees of freedom where the remaining two q, r have 

In this 

The system is 

been algebraically eliminated but may be recalled from the subset 

of (2.15) and (2.16), vie: 

(2.17) 

(2.18) 

0 

For the particular system under study namely free-motion Q,(t) = 

(i2(t) = 0. Further it will be taken that 6 = 0 i. e. p = constant, or 

at best a slow function of time and also that << 1 Mo) , 
the usual aerodynamic case. 

' 

za M 

The various coefficients in (2.15) and 

(2.16) a re  related to the aerodynamic physical quantities by the 

following, 

(2.20a) 

(2.2Ob) 

. 
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=a IC1=r M + M  q (2.2Oc) 

(2.20d) 

M1,m = amount and degree of non-linearity. 

The dote denote differentiation with respect to real time. 

B. N m -  Dimensionalized Form of Equations 

To avoid the occurrence of an imaginary time scale for the 

case j = 0 the equations will not be completely normalized but merely 

distorted by the linear frequency parameter 1Mo/5 From a suitable 

dimension analysis the following non-dimeneional quantities may be 

formed, 

1 

a 

m 
a =  - a 

; B 
m 

1 
D t =  I M d z t  (2.21b) 

Also, for convenience, let 1 -(r = K . 
on the use of c@ for the non-dimensional as well as dimensional 

perturbations. Xn normalized form the basic equations of motion 

become, 

There should be no confusion 
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where, now, the dots denote differentiation with respect to normalized 

time, r , and the linear frequency parameter r 2  is given by 

w 2  = (-I)’+ KP 2 (2.23)* 

Equations (2.22) form the basic set, in normalized form, from which 

the analysis will evolve to yield solutions and criteria for the general 

motion. 

a ( t ) and 8 ( T ) involve the superposition of oscillations and is only 

conditionally periodic; for unless the resonant frequencies are  

commensurable a ( 

Even in the linear theory ( e = 0 )  the complete solution for 

) and P (  T ) will never repeat themselves. 

It will be shown that only for special conditions will the motion be 

periodic and moreover that periodic motion does not exist for a ( t ) 

and fi( T ) in the general non-planar case. 

saying that the physical coordinates a ( t ) and fi ( t ) a re  not the 

separation coordinates of the problem, which should not be surprising; 

These separation (or normal) coordinates, which by definition, a r e  

periodic may be obtained by a contact transformation and this will be 

done such that the problem becomes much more tractable. 

, 

This is tantamount to 

* 
It might be thought from Eq. (2.23) that a resonance value 

for P exists for the linear aerod namically stable case but this is not 
the caae as will be shown when de equatione are expressed in the 
proper coordinate system. 
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Also, in order to study the boundedness of the solutionr, and 

other useful insight the polar form for these equations will be 

obtained. In such a coordinate system, which it may be reasoned, 

is a natural choice for this symmetric problem, the resulting 

equations resemble those describing the motion of planets, electrons 

or other orbital problems encountered in physics but with an unfam- 

iliar potential. 

characteristics of the aerodynamic problem to be revealed. 

This analogy will  allow for several interesting 

The 

normal coordinates a r e  actually a misnomer in  this context since 

by definition they can only uncouple the linear equations. 

by decoupling the linear part of the equations of motion a helpful 

form of the equations is derived. These normal coordinates may 

be defined by the transformation equation 

However, 

(2.24) 
0 

(a 1 (2.24) 
{ p /  = ij ]:;I 

The transformation will consist of a rotation in the plane, 

then the system (2.22) with c = 0 and put & (  r ) = Y (  r ) and b ( 7  ) = 

p ( r ) and consider the vector X ( z  ) = (a, p8 Y , (r ). For this 

transformation, the system is to be described by the first-order 

equation in the four-dimensional X-space, given as, 

Consider 

(2. 25) d X  - =  A)i: 
d r  

which on substituting the componente gives, 

d X  - =  A)i: 
d r  

which on substituting the componente gives, 

(2. 25) 

The transformation will consist of a rotation in the plane, 

then the system (2.22) with c = 0 and put & (  r ) = y (  r ) and b ( 7  ) = 

p ( r ) and consider the vector X ( z  ) = (a, p8 Y , (r ). For this 

Consider 

transformation, the system is to be described by the first-order 

equation in the four-dimensional X-space, given as, 

. 
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The matrix A must be diagonalized for (2.25) to be uncoupled, 

which condition is determined from )A - lraij 1 = 0. The eigenvector8 

may then be determined and finally it may be taken that the required 

transformation is (when expressed in 2-space), 

(2.27) 

Furthermore, no real form exists for the normal coordinates that 

a re  complex conjugates as seen from (2.27). 

of the normal coordinates the basic equations assume the form, 

Expressed in terms 

l f m  
+ [ a + i ( l + K ) P ] b -  [Y2+iKlP]6 + t g 1 w )  = o  (2.28a) 

0. l + m  
3 -k - i(l +K)P] ++ [ w 2  - iKIP]z + t3)8l = O  (2.28b) 

It will be shown later when the initial value problem is discussed, 

that the set (2.28) yielde periodic solutione for the non-linear eystem. 

'. 
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C. The Central Force Field Formulation 
( 

1. Energy Relations and The Orbit Equation', 

By a further trans€ormation to polar coordinates the motion of 

the spinning body will resemble that of the single or two-body problem 

in physics. The origin of the force field will  be the center of gravity 

of the aerodynamic body and the unit mass will trace out an orbit that 

in actuality will be the path traced out by the nose of the missile with 

respect to the center of gravity. The symmetry of (2.28) allows for 

consideration of just one normal coordinate say o( r ). Its equation 

may be written .. e +  A1; + B o  + e # l @ ( l + m  = 0 

with the complex aerodynamic coefficients, 

. B = - [ ( - I$  + K g  + i'KIP] 

Consider the transformed coordinate system, 
-LA T 
a 1  u = Qe 

(2 .29)  

I:, .-- 30) 

(2.30b) , 

(2.31) 

such that the equation of motion becomes 

= o  . (2.32) 

The equivalent frequency parameter, 

(2.35) 
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It Will become informative to 8tudy tha motion in a phymicrl 

plane, in which case the transformation, 

. .  (2.34a) 

with 

will culminate in  the orbital equations 

(2. 34b) 

m + 2  5 - P W 2  + Re(&p + t p = o  (2.35a) 

(2. 35b) 

Note: These equations (2.35) wi l l  also result from operations on the 

equation for the coqjugate normal coordinate 

In terms of aerodynamic parameters 

( 7 ). 

(2.36b) 2 2  Re(&) = - ( - l$+  $ (1 -I<)  P - a b 2  

(2.36b) 

The closed solution form for (2.35) requires that d (x) = 0 which 

can only be satisfied for the cases 

(i) P =  0 (2.37a) 

(2. 37b) (ii) K1= 6 = 0 

(iii) K ~ =  - . z  a ( l  +K) (2.37c) 
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Case (i) is the case of zero epin rate which may be applicable for 

certain aerodynamic missiles. 

non-dissipative case where the aerodynamic damping becomes 

negligible. 

Case (ii) may be considered as the 

Many examples of slender missiles approach this case 

for the purposes of stability investigations. Case (iii) would be a 

special case where the Magnus moment contribution was nullified 

by the aerodynamic damping according to the relation expressed 

in (2.37~). 

In what follows, the analysis will require that 8(x) = 0 such 

that equation (2.35b) integrates directly to give the conservation law, 

(2.38a) 2 .  p Q, = A (a constant) 

o r  when expressed in terms of the physical coordinates, 

r26 t + ( 1 + ~ )  Pr2 = A (2.38b) 

t 

This conservation law states that the combined angular momentum 

(A) of the inherent rotational motion in the (a, p) plane and that due 

to the impressed epin rate remains constant. With this in mind, 

the new rotational variable may be introduced id terms of the 

physical variables, as, 

8 ”  o t  z l ( l + K ) Q I  . (2.39) 

where %= P =  constant.. 
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rc 
motion : 

(1) 

From (2.38) corn00 tho di~tinctioa between planar and non-planar 

Since A is a constant and positive definite for this non-dissipative 

A = 0 implies that for bounded motion 6 = 0 and the 

motion is planar in the a, 

appear as a straight line orientated at some initial 

value cp(0). 

A f 0 implies that for bounded motion 4 # 0 (although 

monotonic) and the motion will resemble Lissajous 

f igu res  in the a, 8 plane dependent upon the magnitude 

and degree of non-linearity in the static restoring 

moment. 

plane and the oscillations 

case then cp must be a monotonic function in time, although 8 may 

not be, as seen from (2. 39). 

(2.38) into (2.35a) wi l l  give the equivalent single degree of freedom ~ 

system equation of motion, expressed in r-variable as, 

Substitution of the conservation law 

m i 2  A2 
= 0 (2.40) 2 2  T +  [ - ( - i ) j + i ( i  -K) P ]  i i t r  - 3 .  r 

The linear static stability parameter. 

* 
(2.41) 

will determine the character of the linear motion. It is seen that 

* 
the fundamental nature of the angular momentum constant is not 
given there per Be. 

A similar classification of motions appeare in Ref. 6 although 
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for 

for all r 'and r since a > 0. 

motion as governed by (2.40) may be found in Section IIL 

t = 0 the aerodynamically stable case (j e: 1) will remain stable 

A full discussion of the stability of the 

Equation (2.40) shows that the general problem is described 

by a second-order differential equation in the class of equations 

? + f(r) = 0 . Autonomous systems governed by such equations have 

received considerable attention in the literature and the basic 

analysis in this paper will revolve around such an equation and its 

m a d e  stations. 

The equation of motion (2.40) may be integrated once to 

yield the conservation of energy law: 

(2.42) 1 2 - (.+ 1 f U,(r) = E 2 

which shows the analogy of the spinning body motion with that of a 

unit mass existing in a central force field. 

U,(r) may be written, 

The potential energy , 

(2.43) 1 A' 
r 

U,(rl = U(r )  -i- z 7 
where the potential U(r) is the normalized form of (2.14) and is such 

that the central force is F(r) = - a U(r)  and, 

1 2  m + 3  
*r U(r) = ar + 

1 A' and the potential energy due to the centrifugal force is 7 . r 



Before the orbit equation can be derived, a derivative transformation 

is required such that, 

whence the eqwtion of motion (2.40) may be written, 

(2.45) 

(2.46) 

where the forcing function, 

(2.47) m + 2  f(r)  = -ar - e r  

Introducing a new variable u = - r 
equation, 

equation (2.46) become6 the orbit 

(2.48) 
d u  + u =  - a u -3 + > u  -m-4 2 

z2 A2 

so called because of its analogy with the equation describing the 

classical orbit problems. Following Goldstein (Ref. 7). rather 

than attempt to solve (2.48) formally, use will be made of the energy 

equation (2.42) which gives, 

(2.49) 

and which, with the transformation equation (2.45) gives, 
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A d r  
(2.50)  

Hence, the integral eolution to the orbit equation may be written, 

r 

Adu 
' (2.51) 

- cp = vo 
U 
0 

which completes the formal solution to the general non-linear 

aerodynamic problem under study. 

2. The Orbit Integral 

Provided the motion is bounded (see Section IV) the path of 

the nose of the missile lies entirely within the annulus rI  and r2. 

These limiting values for the resultant angle of attack are the tuning.  

points and are the roots of the energy equation (2.42). 

resultant angle of attack rotates through an angle of precession 

Whence, the 

whilst r passes from rl  to r2 and back again, where 

dr  A- 2 A c p =  . 2 r  r 

1:' 1 

(2.52)* 

* . .  
See Figure 4. 

I 

: 
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At these turning point. r1 and r2, 

stationary p i n t  since angular momentum is conserved and in general 

= 0 but thio doe. not imply a 

# 0 at these points. The conditions for boundedness are determined . 

from (2.42) and these form the subject of the next Section. The 

condition for periodicity in the classical sense, on the other hand, 

given a bounded solution, requires that A* be a rational function of 

2r i. e. that A 9  = 2 r  p/q where p and q are integers. According to 

Landau and Lifshitz (Ref. 8 )  the motion would be periodic only for 
2 those cases in which the potential energy varies as l/r or as r . 

induction, it is seen that all non-linear aerodynamic potentials will 

not yield periodic solutions i. e. the solutions will never repeat them- 

selves. However, if the definition of period is taken to be from peak 

to peak then values for 4~ and T (the period) may be obtained by 

integration and this will be considered in succeeding sections. 

By 

The precession A 9  may be reduced to a more tractable i 

form by a euitable non-dimensionalization. Define a new coordinate, 
1 

then the preceseion reduces to, 

(2.53)* 

(2.54) 

* 
the later discussion on stability such a restriction Will be removed. 

Note that such a coordinate only has meaning for a > 0. In 

! I  
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where €l,  

in full, the expression under the radical becomes 

I ,  are two real toote of F( E 2 KID K$ = 0. &preeeed 

For the bounded motion, the coefficients K and K characterize the 1 2 
system and may be thought of as representing the initial conditions 

and non-linearity in the system respectively. In term6 of the system 

variables; ! 

2E 
K'=+ A 

(2.56) 

(2 .57)  

With this particular form of polynomial representation for the potential, 

i the general solution for A? may be written 

m + 3  
2 
- 

d €. € 
&p= -2  (2.58) 

m + 3  m + l  
-1 I - E  - K2 

This will be integrable in terms of simple trigonometrical functions 

only in certain cases. Goldstein (Ref. 7 )  discusses the possibilities 

of the exponent m in the radical to yield solutione expressible in terms 

of the circular functions and the Legendre elliptic integrals of the first, 

second and third kinds. Some examples of interest to the aerodynam- 

;iCi&$ will be co&3ered here. 
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3. 

Of especial interest would be those cases where the spinning 

The Orbit htegral  Solutioas (Examples) 

slender mieeile was acted upon by a linear restoring moment ( f 2: m 

= 0), a cubic restoring moment (m = 1, a > 0 or < 0 )  and a quintic 

restoring moment (m = 2, c > 0 or C 0).  

(a) The Linear System 

For m = 0, A? reduces to an elementary integral and 

may be shown to be AQ= 2a, whence A0 = 2a - 9 A P A T  

instead of integrating over the half-cycle, the integration is performed 

over an arbitzary range of f the equation for the resultant angle of 

. If 

attack may be obtained, i. e. write, 
1 5 

’which upon integration yields the result, 

(2 .59)  

i 

2q - K  
2(4p0- CQ) = sin -1 t,.. 1 - sin-’ f 1 (2 .60)  

2 where for convenience, = rl . It may be assumed without loss 

of generality, that Qo = 0 when ( = 4 At t h i s  point 4 = r = 0 
e .  

and from the energy relation (2.49) 

, .  (2.61) 
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when exprommod in aormailirced form. 

become 8, 

With t h i m  vrlue for q 0  (2 .60)  

and finally in usable form as, 

(2.62) 

(2.63) 

which will be recognized as the equation 0f.a conic section in the 
2 

(r , 2 rp ) plane. In the (r, 0 )  or  (a, p) plane the solution would 

exhibit a precession that included the impressed spin rate P. A full 

discussion of the initial value and bounded solution problems will be 

reserved to the later sections. Here it is sufficient to show that the 

familiar linear system is but a special case of the integral solution 

(2.54) and further to show the elegant form of Bolution employing this, 

technique. 

(b) Cubic Moment 

A case frequently encountered in free-flight motions of 

spinning aerodynamic problems is one where the static restoring 

moment varies according as the cube of the total angle of attack, i, e. . 

m =  1 (2.64) m +  2 M(r) = -ar - f r 
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For m SB 1, the precoe8ion A fp , from the g nor 1 roault (2.54) may 

be written, 

r) 

The question of boundedness of A Q  will be given in Section IIL If it 

is assumed that the motion is bounded i. e. that A g  remain real then 

t is bounded such that, 

Assume that F( 9 ; K1, IS2) can be factored in term6 of the ordered 

three roots T1 > q 2  > q3 then, 

(2.67) 

which may be recognized as a complete elliptic integral of the third 

kind and from Ref. 8 may be shown to have the solution, 

where 
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3 K -  [ l t T  1 2 9 4  k ta k +,,, 
2 (2.69) 

and Ao( 8 ,  k) i e  Heumann'e Lambda Function 

EF( 9, k') + KE( 9, k') - KF( 9 ,  k') (2.70) 3 Ao( 8, k) 

The argument 9 is related to the roots of F( rl ; Kl, K2) = 0 by, 

(2.71) 

In this exact form it is seen that the solution is not quite so elegant 

data analyst who wishes to interpret a given bounded solution to 

extract the pertinent motion parameters. A numerical set of compu- 

tations was performed on the IBM 7090 Computer at Ames to indicate 

the effect of a cubic non-linearity on the precession Acp and the 

bounds on the motion (determined by the energy level), The results 

a r e  plotted on Fig. 5, < 1, 

the precession Av is strongly dependent upon c but for t > 1 the 

dependence is slight implying that data reduction techniques employing 

the measurement of A p  to deduce the magnitude of the non-linearity 

From such a plot it is noted that for 

are most accurate for t < 0 (1). 
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Iu THE INITXAL VALUE PROBLEM 

In general, no explicit solutions exist for non-linear differen- 

tial equations. 

methods, considerable insight may be gained as to the nature of the 

solutions without recourse to actually requiring the solution. 

such method is the phase plane method developed by Poincar4 

Lienard and others (Refs. 10 and ll), another method employs the 

potential energy plane. The equations developed here, thusfar, are 

particularly amenable to such methods. 

parallel results and also results not conveniently obtainable by the 

phase plane method. Such methods encompass perturbation techniques 

and orbital mechanics. Each method will be presented as required to 

It is fortunate, however, that by use of well-developed 

One 

/ 

Other methods provide 

- -~ . - - r+  +I..- d - - Z w . n d  " + q k : l Z + . *  m - ; + a v < %  5-d val%+nd t r r 4 r q  
w--_-..- -I - -w_-  -- "--w----J -------- --- - ------ --c---- 

A. Phase Plane I 

For the non-dissipative case ( 6  = 0) the orbit equation for the 

general non-linear system was found to be, 

With the transformation t0.a new coordinate system ( E , ) where, 

Note: This coordinate ie the same coordinate as given in (2.53) 

except that now for the discussion of stability the restriction a > 0 
* I  

, 



I '. 

hao been removed. 

the form, 

In theae coordiaater, the orbit equ+ioa aamunea 

where the aerodynamic parameters are given as 

l + m  
2 
- 

b = tA 

The quantity (a) is a purely aerodynamic property and does not 

depend upon the initial conditions. The quantity (b), on the other 

hand is a function both of the non-linearity in the system and the 

initial conditions, through the angular momentum A. The initial 

conditions are u vo and A in the phase plane, which are directly 

related to the initial conditions rO, Go, Q~ and +o in the physical 

plane. 

0' 

The differential equation for the integral curves is, 

where the velocity v = d r/d* . Equation (3.6) is but a special 

example of the general non-linear conservative system governed by 

the equation, 

(3.7) 
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which .how. that the integral curvem have a earo dope at the point. 

i, the roots of f( 4 ) = 0, provided v # 0 and moreover all the singular 

points occur along the 4 -axi8. (3.6) may be integrated directly to 

give, 

E = z ' v 2  + U ( 4 )  

where the potential energy is, 

The relation 

As shown by 

between U( 4 ) and f( < ) is, 

(3.9) 

(3.10) 

0 
Poincare (Ref. 13) the only possible singular points to 

(3. 7 )  are  either canters, saddle points or their confluence. The , 

location of the singular p i n t s  and their character will provide the 

desired results for the non-linear aerodynamic system. 

resultant angle of attack r = 4- is always a real quantity 

greater than zero then only the positive quadrant in the (v, < ) phase 

Since the 

plane need be considered for conditions of stability. Furthermore, a 

trajectory will exist in the phase plane for all initial conditions such 

that E - U( < ) > 0. Since the problem requires the solution of a 

non-linear system with the singular points characterized by centers 

or saddle-points the linear approximations in the phase-plane method 
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are not'valid (Ref .  11) urd the mingulrr point. ~0 determinod from 

* 
v = o  (3.1 la) 

(3. l lb )  

describing the conditions for equilibrium. 

are analytic and described by, 

The exact trajectories 

(3. 12) 2b - a f m + l  - - = o  + (v2 - E)< m + 3  
tm+  m + 3  . 

where the (normalized) total energy E can be expressed in tenns 

of the coordinates, viz: 

1 2 1  -2  2b -m-3 - -  
m t 3  'm E = zCm - -a{ 2 m  (3.13) 

the subscript m denotes the maximum value and 

of the b i n e  points of the motion. 

express f( 

4 
Following Minorsky (Ref. 12) 

is the greater m 

) in a Taylor's eeriee around the singular point to give 

. 
(3.14) 

where 9 =  k - t s  and cn = ? ( < ) I  The potential energy is 
t a 4 s  

Such a condition does not necessarily imply a stationary point 
since 6 # 0 when Y = 0. 

\ 
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thuo automatically oxprosmod a8 a Taylorb aeries end the conser- 

vation law (3.9) becomes, 

The discussion now is reduced to considering the potential energy. 

If the potential energy U( < ) is a minimum at the singular point, then 

the system is locally stable; if it is a maximum there, then the 

system is locally unstable. The condition of a stationary point for 

the extrema would result in neutral stability which for all practical 

purposes may be considered as unstable. 

It is informative to consider the first term in the series in 

(3.15) such that the equation describes an ellipse or hyperbola 

abour rne singu'rar poinz, viz; 

1 2 E = v 2 -  clq (3.16) 

Clearly, the condition for stability depends on the sign of c1 and from 

what has gone before, c1 = -VU( 6 ) I r =  & The conditions c1 < 0 

depend on the sign and magnitude of the aerodynamic parameters 

a, b and ks* Mathematically it is convenient to study the stability 

in 4 - variable; graphically it is clearer to present the results in 

the inverse coordinate, i. e. 

> 
8 

(3.17) 
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In R-variable the 8nex:gy equation ia, 

E = v2 + U(R) 

1 2 1  2 b R m + 3  
2 '  m + 3  U(R) .L - z R -  - - a R  -- where 

(3.18) 

(3.19) 

In the equation for the potential (3.19) the first term is due to the 

centrifugal forces set up by the rotation in the (r, Q ) plane; the 

remaining two terms constitute the potentialdue to the restoring 

moments, linear and non-linear. 

unstable regions in R dependent upon the signs and relative magnitudes 

of a, b and m; the singular points located within the boundaries will  

characterize ths regions ae stable or unstable. 

points will occur along the v = 0 axis at the roots of U'(R) .L 0 i. e. 

at the roots of, 

There wil l  be stable regions and 
I 

I 

These singular 
I 

4 - b R m t 5 - a R  + 1 = 0 (3.20) 

Assume that the real roots of (3.20) a re  Rs then stability is assured A 

f or Vvl(Rs) < 0 : 

trajectories in the phasa plane are hyperbolas, see (3.16)) and for 

U"(RS) = 0 neutral stability is experienced which for practical 

For U"(R ) > OZhe 'region is'an unstable one (the 
S 

purposes may be considered as unstable, Written'more concisely, 

m +  1 - a - b(m + 2)RI -4 -3R8 

< 0 stable 

.c 0 neutral (3.21) 

> 0 unstable 

.. 
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The various caoes may now bo diccuooed with the aid of the potentid 

energy curves and the accompanying phase plane, . . 
Linear Syutem, b = 0 

Here the familiar aerodynamic system i e  described by the * 

potential function 

1 -2  1 aR 2 
'f U(R) P - - R 2 (3.22) 

For this to be a 
1 

The singular points are  located at RB = - 
real point in the physical plane then a > 0. 

R 

gives - 4a < 0 which again requires that a < 0 for stability. 

s- 
Is the region in which 

is located stable? To answer this question, the criterion U"(R,)<O 
8 

Expressing these results graphically in the complementary potential 

ana pnase pianes gives Figures {a; and ib;. F u y a i b A  A A A V L A V U  L . -  A D  9 -  

possible provided E > El. 

plane between the bounds R1 and R2 which are the roots of E - U(R) 'I: 0, 

provided only that a > 0, For the special case E = E circular motion 

results at the radius R = - - where the energy level E~ = 6. 
Note that the question of stability is unaffected by the magnitude of 

the angular momentum provided only that A # 0. 

to the non-linear system as will be shown. 

For E < El motion is elliptic in (r, CQ ) 

1, 

& 
Thie is in contrast 

For  a < 0 the motion is 

unstable for all R. Consider the full expression for the parameter !a,! 

(3.23) 
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The queotion of the sign of '.a' d l 1  depend on j and the spin rate P, 

For the aerodynamically stable case (j = 1) a > 0 for all P. The 

aerodynamically unstable case (j = 0 )  however may be spin-stabilixed 

if spun at a rote P > 4 4 i  i. e, approximately twice tfre 

natural frequency of the complementary stable case. 
! 

This value 

depends on the inertia characteristics and aerodynamics of the 

specific vehicle in que stion. 

of the motion is completely determined by 'a'. 

Once determined however, the nature 

Non-Linear System, b f 0 

Here the possibilities are  a little more varied and the governing 

cases will be listed. 

The singular points will be located along the v = 0 ax is  and at 

- -r..-, .. ... . 1 # ibe rooie 01 U - ~ A S ]  

2 
6, anti in genera;, rnara WUL ut: - \ ~ A A  i 3; ruuia 2 

in the R plane of wnich only the positive roots will have physical 

significance. 
! 

T h e  solution of (3.20) to  obtain these critical values 

of angle of attack is left to the usual techniques of numerical analysis 

in the general case of integer m. 

the cubic restoring moment exact solutions are possible. 

For the special case (m = 1) of 

Example: Cubic Restoring Moment Singular Points 

put p = R- (l  * m, then the singular points are located at the 

roots of, m + 5  

p r n +  a p - b  - 0 (3.24) 
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For  M = 1 (3.24) becomes a cubic with the three real roots 

given by, 

(3 .25~~)  

(3.25 b) -1 3 6 b  

P62 2 a f i  

= 2 6  cos/  f cos -1 3 6 b  

ps3 2 . 6  

= 24 cos 1 + cos 

(3.25~)  

Certain conditions are implied for the roots to be given by (3.25) 

which depend on the discriminant A = (b/2)2 - (a/3)3. 

there Will be three real and distinct roots given by (3.25). For A = 0 

there will be three real roots, two of which will be equal. For A > 0 

For  A < 0 

those roots p > 0 have meaning in the present context. There exist 

four basic possibilities for s tab le  and unstable motion and these will 

be considered in turn. 

Sj 

Case 1 , a > 0, b < 0 

This would be the case of a soft spring acting on a stable linear 

system. Her e the potential function, 

U(R) = -2R- 1 2  - -aR 1 2  b R m + 3  
-m+3 2 

The singular points are  determined from the roots of (3.24). 

instability is characterised by a local marimurn occurring in the 

Since 
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.potential function, then instability would occur for large R if, 

2bRMt 1 > 1  (3.26) 

i. e. if for large R the destabilizing influence of the non-linear term 

overcame the basically stable linear system. 

2bRm + '/(m + 3)a < 1 implies a stable system for all R. 

Conversely, 

Expressing 

these results in the two planes, gives Figures (c) and (d). It is 

possible then for instability to occur at large R if the non-linearity 

is large enough to overcome the stabilizing influence of the linear 

term. 

attack for instability but merely a low angular momentum, since 

as A-0 then R - w  ao for all r. From this it is seen that nearly 

planar motions are more SUSCeptlDAe to insiar>iiiiy Enan, say, a neariy 

circular motion. 

The designation 'large R' may not require a large angle of 

~ _ -  - 

The limits of bounded and physical motion a re  that El 4 E < E3. 

Given a physical motion the upper bound to the stable region is the 

separatrix in the phase plane with energy level E3. The equation to 

this eeparatrix is given by (3.12) with E = E3 determined from 

UIt(Rs) < 0 at the singular point. 

Case 2, a,< 0 , b < 0 

The case of a soft spring acting on an unstable linear system. 

Clearly thie would be unetable for all R. 

. '  
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C a e e 3 ,  a $ O ,  b > O  

The case of a hard spring acting on a stable linear syatem. 

This case would result in stability for all R 

C a s e 4 ,  a < O ,  b > O  
c 

The case of a hard spring acting on an unstable linear system. 

This is the complementary case to Case 1 where now the non-linearity 

is attempting to stabilize an otherwise unstable system. The 

diagrams are similar (see Figure (e)). 

a modulus sign to give the criteria, 

The inequalities now require 

> 1 stable for large R (3.27a) I 2bRM -t I 
I a(m + SI t 
I -I. 1 I 

4 1 unstable for large R (3.27b) 1 :E-: 3 ) l  

In all of the above cases the initial conditions must be such that 

physical motion is poseible i, e. that E >, E1 where El = U(Rs) . 
The singular points Rs are the real and positive roots of U'(R) = 0. 

B. Perturbation Method 

Having described the stability of the non-linear aerodynamic 

system and established the necessary bounds it becomes necessary 

to quantize the solutions for use in extraction of the pertinent 

parametere. The perturbation theory of Poincarefand later math- 
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Figure (e)  
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ematicians will now be applied to obtain the 5rst order'of 

to the non-linear problem, 

the approximations to O( t ) as  it is not expected that any qualitative 

change will occur in the solutions. 

solutions 

No attempt is made at this time to improve 
2 

It has been chosen to concentrate on obtaining the precession 

in what follows, as it is felt that A Q  is most readily obtainable A Q  
from a given bounded solution. Xf the period T of the oscillation is 

desired, a simple derivative transformation (2.45) applied to the 

results will yield the desired expression. 

orbit equation, ' 

Consider the normalized 

(3.28) * 

where the coefficients (a, b) are given by (3-6). 

method as applied to the physical coordinates a( 

yield suitable results and the reader is referred to Appendix A for 

The perturbation 

} am pi 7 i aia no& 

such a derivation. The transformation to a polar coordinate system 

was made early in the analysis in anticipation of this difficulty and 

a series solution for &( '4) will be assumed in the form, 
N 

(3.29) 

where the rotational variable Q has been distorted by a "frequency'( 

factor due to the non-linearity in the system, 
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ao that for e = 0 the * O  rotatioar1 8 C a h 8  Urn ideatical. 

of (3.29) and (3.30) into (3- 28) gives, 

A 8ub8t;itutioa 

i 

. 
Equating the coefficients of the like powers of 

following recursive system 

there derives the 

0 
d' 4 -m-4 

= + b l t O  O z n l  
a 

(3.32a) 

(3.32b) 

( 3 . 3 2 ~ )  

with the given initial conditions i(0) and -4, %(O , . Tho solution 
d& 

to the zeroth order equation has been found a d  ia8 

CO. 2 q * ]  t ; m  . [ l i  C 
qc2 - a 

(3.33) 

. 
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which describes a conic section in the (l/e o2 ,2q*) plane. Again 

it will be assumed that the conditions a r e  such that the motion is 

bounded (see Section N), which mean6 that (3.33) describes either 

a circle or an ellipse in the (114 oz, 2 Q  * ) plane. The straight 

line or planar motion case is excluded from this analysis by the 

requirement that A # 0. From (3.33) the necessary operations 

for the rightohand side of (3.32b) may be performed, vir: 

For bounded motion dT2 < 1 and hence the term 

cos 2 

sufficient accuracy to give 

* < 1 and an expansion procedure will provide results of. 

which together with the expanded linear solution 

+ 

(3.37) 

(3.38) 

. 
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will givo to O( c ) tho oquatioa for th. corraotion to tho linorr 

solution 
k 

+ ( 7) m+ 4 bl d c L  COB 2 9  * 
C 

+ . e . . . . .  (3.39) 

To eliminate theae secular terms then, 

. .  

(3.40) 

>--ram ( 3.40) and (3.5) with b =6bl then the non-linear frequency 

correction is 
l + m  - 

Q 1 = + -  m + 4  A 2 
8 (3.41) 

l + &  
so that to O( 6) 

9 .  - 
Q* = ( 1 +  c4 bA 2 + 0 ) Q  (3.42) 8 

but A?= 2a hence 

l + m  

(3; 43) 

. 

- 
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For tho opocirl cas. M = 1 thio givoo 

+ '  
A comparison of W e  result with the exact results and the expansion 

of the orbit integral are given in Figure 5 

* 
Obtained by numerical integration applied to constructed 

examples on an IRM 7090 digital computer. 
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IV. THE BOUNDED VALUE PROBLEM 

Before applying the preceding analysis to the non-linear problem 

it is informative to reiterate the linear aerodynamic $system in this 

new context. 

known results in a more direct and compact form and further to give 

new insight into the spinning aerodynamic body problem. 

extraction of the pertinent aerodynamic parameters from a known 

linear amplitude history will follow by way of a concluding example, 

The linear aerodynamic spinning body describes an amplitude history 

according to the exact sotution, 

It will be shown that the elegant orbit formulation yields 

The . . 

Whether or not the orbit is bounded will depend on the total energy 

(initial conditions) and the orbits eccentricity e = i z ? *  

The governing relations are, 

e a 1  E 3 0  unbounded motion 

e < l  E < O  bounded motion 

and in particular, circular motion is possible if e = 0. 

Unbounded Motion 

For e < 1 the motion is bounded and for e > 1 the motion is 

unbounded. The transitional state e I: 1 will  determine any 

tendency to resotlate or paas from one state to another. This 

, 
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resonance condition implieu a = o i. e. - (=I) j 1  + (1 - ~ ) t p 2  = o 
which would imply a resonant spin value ouch that, 

or, in terms of the physical aerodynamic properties, 

= 2 
PR 

The square of the spin (PR) 

(4.3) 
c 

is eknply a mathematical way of showing 

that this critical value would occur whether the spin was in the direct- 

ion of the inherent rotational motion O(t) or  against it, For this 

resonant value to exist, however, the right-hand side of (4.3) must 

be a positive quantity, For j = 1 this value does not exist, as found 

earlier, Indeed this "resonance" value for the spin rate is actually 

that value for which the spinning body passes from an unstable state 

to a stable one and the body has become spin-stabilized. A related 

condition for unbounded motion is that ' E >/ 0 ;  again the transitional 

state E = 0 will determine the limiting values for to(0)  for the 

bounded motion. From (3.13), 

which states that for unbounded motion <mZ > 6 a known condition 

from considerations in the potential energy plane. 
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Bounded Motion 

I -  

, 

Bounded motion for the linear case is aeeured if e < i and 

E < 0 . 
known result and is automatically satisfied for a11 real 

from (3.13), on placing b = 0 provided e m2 < <a i. e. 

That the total energy be negative for bounded motion ie a 

as aeen 

In general, the bounded motion will  be elliptic when traced in the 

proper coordinate eyetern, vir8 in the ( to 
equation (4.1)). 

-2  , 2 Q )  plane (see 

Circular Motion 

A special case of the bounded motion solution is when the "iorce'; 

derived from the potential U( 

set up by the rotation such that the angle of attack is a constant i. e. 

circular motion. 

which would arise when E = = $ , whence circular motion would 

result when the spin rate is given by, 

) just balances the centrifugal force 
i 

The eccentricity of such an orbit is zero (e = 0) 

From (4.2) and (4.6) it is seen that 
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and on oubatitution of tho aerodynamic parameters it can be ohown 

that the spin rate required for circular motion i 8  approximately 

one-half that for spin stabilization. 

To complete the discussion for the linear aerodynamic problem 

use will be made of the orbit integral solution to extract the static 

stability parameter f r o m  a given bounded 80lUti01L 

A. Linear System 

The orbit integral (2.54) provides the simplest result for the 

linear eystem when transformed back to the t h e  variable, with the 

aid of (2.45) to give the simple result (for i = 0), 

-7t +-- LLT A 

Expressed in terms of physical variables this gives, 

Z it is found that the affect of the spin is mall then the following 

simple relation holds, 

(4.10) 

. 
where As = UAt is the distance flown along the flight path during 

one complete o~rcillation af the angle of attack, Hence knowing the 

.. 
t .  . .  
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number of peaks in the amplitude a, B plane and the distance flown 

(or time taken) for each peak the static stability parameter (C, ) is 

easily extracted using (4.10). X f  the roll rate is measurable from 

flight data then (4.9) ehould be used. Figure 6  illustrate^ how the 

required information is obtained f r o m  a given flight trajectory 

(taken from Ref. 14). 

. a  

B, Non-Linear System 

Once the assumption of non-linearity in the eystem ie accepted , 

the number of possible solutions becomes infinite as opposed to a 

finite number (enumerated above) for the linear system. It would 

be des€rous in this instance t o  have a method whereby the data itself 

indicates the rnapit lrd-  1 ~ 3  Aog?eo =f z=z - Z ~ = Z Z ~ ~ -  :ii ;Le ~ L X A A  io  

the analyst. 

a priori and force the data to conform (say fit a cubic dependence for 

The alternative i s  to assume the form of the non-linearity 

the pitching or restoring moment). It is possible; by such methods 

to obtain "good fits" for the data in hand but it i s  questionable 

whether or not one can predict the stability characteristics of other 

missiles within the same family ae the one analyzed. It is clear 

that the fir st approach is the better although more difficult to apply 

but to this end the following experiment is suggested. 

Suggested Experiment, 

From the general result, the precession in the a, 8 plane of 

the resultant angle of attack loop. i a  given byL 

.. 
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(4.11) 

Taking logarithms of both sides gives, 

(4.12) m f 4  
32 &?nAa = l n  - 2uC -& (1 + m ) l n A  

If now several launchings or free-flight tests a re  made on the 

configuration under study where various rates of spin are intentionally 

giveq a series of results (A@ will  be obtained for a range of angular 

momentum (A). 

data by making use of the sectorial velocity which from Kepler's 

The angular momentum may be deduced from the 

second law of orbital motion is one-half the angular momentum 

(see Figure 7). 

the -Darticular free-flizht data under a n a l y n i n  tacether 4 t h  the 

precession AQ. 

enable the magnitude and degree of non-linearity to be deduced from 

the data. Figure 7 serves to illustrate the data reduction technique. 

The angular momentum may then be computed for 

Plotting these quantities on a logarithm plot will 
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V. CONCLUDING REMARKS 
t 

The foregoing analysis has shown that the many isolated cases 

of spinning aerodynamic body behaviour a re  but special examples of 

a general theory presented here. Further it has been shown that the 

aerodynamic problem may be analogized with the orbital motions 

encountered in physics with all their elegant solutions and general 

results. The behaviour of the spinning aerodynamic body in a non- 

linear field is governed by a potential which has been studied with a 

view to establishing stability boundaries for the various families of 

aerodynamic bodies (encompassing such characteristics as spin 

rate, inertial distribution, form of static restoring moment, etc. ). 

The analysis has proceeded further to study the bounded solutions 

to yield easy-to-apply methods for parameter extraction. 

a re  given for extracting the parameters from linear data (together 

with an example) and from non-linear data. 

linear system emphasis has been placed on allowing the data to 

indicate the magnitude and degree of non-linearity in the system 

rather than fit assumed forme to the data. 

Methods 

I 

In the case of the non- 

: I 
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APPENDIX A 

The Non-Existence of Periodic Solutions for Physical Coordinates : 

a ( r ,  B T 

To investigate the solution for the physical coordinates a(T), 

j3(? ) consider the non-diseipative case, 6 = 0 , such that the 

equations (2.22) become, 

l+m 
= o  b'+&+(ItK)Pi-KIPp- t o ( a  2 2 2  + p )  , 

'To describe the system completely two characteristic time scales 

would be required; one to describe the non-linearity ( iE ) and the 

other to describe the effect of spin (P), on the solution. 

not clear that a( CT ) and p( T )  are periodic even for P - 0, this case 

Since it is * 

will be considered first to illustrate the solution. 

need for two time ecales and eolutione are assumed to be of the form, 

This obviates the 

n = O  

N 

(A, 3a) 

* For this eection it has been found convenient to distort the t h e  
. s C d 0  8UCh-t - 2 1 
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and w is the natural frequency (if it exists) of the non-linear 

08CillatfOn and has yet to be determined. 

(A. 1) and (A. 2)  gives, 

Substitution of (A. 3) into 

whence derive6 the recursive system 
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where for the purposes of algebraic simplicity the case m = 1 h a m  

beencchosen. Now, from (2.34b) it is seen thaz for P =  0, the 

angular momentum A may be written, 

A =  
72 72 

where 1 Provided the initial conditions 

a r e  antisymmetric i. e. 2 i(0) = aa 611 jj  where the Kronecker delta 

bij = 0 , i 7 j and 6 = 1, i = j and a is an arbitrary 8c;rle factor then 

A # 0 and the motion is non-planar. 

P p ( 7 )  and ?2 P a( 7) . 

ii I j  
From these conditions, assume 

that the zeroth order of Q solutions are of the form, 

(A- 9 4  

(A- 9b) 

* 
Q = A  c o s t  

0 0 

BO = B~ sin (t* i fi) . 

I 

where it is noted that @ LD u/2 implies planar motion (A = 0 )  and is 

to be excluded. 

become, 

After some algebra the first order of e solutions 

* 3 sin t cos @ 

* 2 3  + 3  1 * + + cos t sin QI cos QI + 3 co8 t sin + a sin t 

siq @ sin 2@] + non-secular terms (A. loa) 
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and 

* 3 4 
-cos t cos2QI + 5 cos t 

3 3  * 

* 
I ( +  a1 = 2 d  A cos t + AoBo a1 l o  

2 3  * 
sin Q+ a sin t sin 2~13 +Ao - 4 C 0 6  t 

+ noa-secular terms (A. lob) 

To avoid secular terms which would invalidate the assumption of a 

convergent series solution (A3),  the integration constants AoB Bo 

must satisfy the equationsr 

(A. 13) 
2 3 2 3 2wlA0  + i A o B o 2  COB @ +  zAoBo sin # +  A 0 .I 0 

Since A # 0 in thie general non-planar case then (A. 14) requires that 

A. # 0, Bo # 0 and thus the phase angle @ must have one of the 

following value s 



60 

But # = 0 implieu 8, .L 0 for 6) 

‘Also 9 = a12 implies A L: 0. 

(A. 12) will reveal once more that Bo * 0. From induction therefore 

to rx ia t  which vfolatru A f 0. 

Substitution of (8 = v into (A. 11) and 

it is seen that there exist no conditionm such that the non-plaaar 

motion is periodic and the method fails in t h i s  coordinate syetem. 

. 
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